Modern Defense Technology ›› 2024, Vol. 52 ›› Issue (1): 102-110.DOI: 10.3969/j.issn.1009-086x.2024.01.013

• TARGET CHARACTERISTIC, DETECTION AND TRACKING TECHNOLOGY • Previous Articles     Next Articles

A High Order Motion Feature Estimation Method for Multi-radar Maneuvering Target Detection

Songyao DOU, Ying CHEN, Yan CHEN, Zhengwei LIU   

  1. Beijing Institute of Radio Measurement,Beijing 100854,China
  • Received:2023-02-02 Revised:2023-02-24 Online:2024-02-28 Published:2024-02-21

一种多雷达机动目标探测高阶运动特征估计方法

窦凇耀, 陈映, 陈燕, 刘政玮   

  1. 北京无线电测量研究所,北京 100854
  • 作者简介:窦凇耀(1999-),男,彝族,云南富源人。硕士生,研究方向为传感器管理。

Abstract:

Due to the mismatch between the tracking model and the real motion state of the target, the estimation accuracy of the high order motion feature of the target is poor in single-station radar.In this paper, the estimation accuracy of high order motion feature of the target is improved from the perspective of radar networking and radial velocity augmentation measurement. The sequential unscented Kalman filter algorithm is used to centrally fuse the asynchronous measurement information of multiple radars. The estimation effect of the high order motion feature of the target under different ranging, angular accuracy and radial velocity augmentation measurement is analyzed, and the influence of the radar station layout on the estimation effect of the high order motion feature of the target is analyzed by using the geometric accuracy factor of double sensors to optimize the radar station layout. Through simulation experiment, it is found that the radar ranging accuracy in this radar networking mode has a greater impact on the estimation effect of high order motion feature than the angle measurement accuracy. Radar station layout optimization combined with radial velocity augmentation measurement can effectively obtain high precision estimation of high order motion feature of target.

Key words: target tracking, radar network, motion feature, sequential filter, radial velocity

摘要:

针对单站雷达常因为跟踪模型与目标真实运动状态失配而造成对目标高阶运动特征估计精度较差的问题。从雷达组网结合径向速度增广量测的角度,来提升目标高阶运动特征估计精度。采用序贯无迹卡尔曼滤波算法对多雷达的异步量测信息进行集中式融合。分析了不同测距、测角精度与径向速度增广量测下目标高阶运动特征的估计效果,并利用双传感器的几何精度因子优化雷达站布局以分析雷达站布局对目标高阶运动特征估计效果的影响。通过仿真实验发现,在该雷达组网方式下,雷达测距精度比测角精度对目标高阶运动特征估计效果的影响要大。雷达站布局优化结合径向速度增广量测可以有效地获得目标高阶运动特征的高精度估计。

关键词: 目标跟踪, 雷达组网, 运动特征, 序贯滤波, 径向速度

CLC Number: