Modern Defense Technology ›› 2025, Vol. 53 ›› Issue (1): 1-10.DOI: 10.3969/j.issn.1009-086x.2025.01.001
• SPECIAL COLUMN • Next Articles
Chen FEI, Liang ZHAO, Yongliang HE, Yincheng LI, Song XU
Received:
2024-07-08
Revised:
2025-01-22
Online:
2025-02-28
Published:
2025-02-27
Contact:
Yongliang HE
通讯作者:
贺拥亮
作者简介:
费陈(1994-),男,安徽芜湖人。讲师,硕士,研究方向为无人集群,强化学习,机器学习,无线通信。
基金资助:
CLC Number:
Chen FEI, Liang ZHAO, Yongliang HE, Yincheng LI, Song XU. Trajectory Planning for UAV Swarm Target Strikes in Urban Environments[J]. Modern Defense Technology, 2025, 53(1): 1-10.
费陈, 赵亮, 贺拥亮, 李银城, 徐嵩. 城市环境下无人机群目标打击航迹规划[J]. 现代防御技术, 2025, 53(1): 1-10.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2025.01.001
参数名称 | 仿真取值 |
---|---|
规划空间大小 | 500×500 |
起始点位置 | (20,10,20) |
目标点位置 | (410,380,30) |
种群大小 | 30 |
最大航程约束 | 1 000 |
无人机飞行高度约束 | (0,50) |
航程代价权重 | 0.4 |
高度变化代价权重 | 0.4 |
转弯角代价权重 | 0.2 |
迭代次数 | 50 |
Table 1 Simulation parameter settings
参数名称 | 仿真取值 |
---|---|
规划空间大小 | 500×500 |
起始点位置 | (20,10,20) |
目标点位置 | (410,380,30) |
种群大小 | 30 |
最大航程约束 | 1 000 |
无人机飞行高度约束 | (0,50) |
航程代价权重 | 0.4 |
高度变化代价权重 | 0.4 |
转弯角代价权重 | 0.2 |
迭代次数 | 50 |
场景名称 | 建筑物数量 | 威胁区域数量 |
---|---|---|
无敌防守 | 10 | 0 |
有敌防守 | 80 | 10 |
Table 2 Simulation scenario settings
场景名称 | 建筑物数量 | 威胁区域数量 |
---|---|---|
无敌防守 | 10 | 0 |
有敌防守 | 80 | 10 |
1 | 张换然, 申凌峰, 任资卓, 等. 无人机辅助智能边缘网络技术综述[J]. 电讯技术, 2024, 64(2): 325-332. |
ZHANG Huanran, SHEN Lingfeng, REN Zizhuo, et al. A Comprehensive Survey on Unmanned Aerial Vehicle Assisted Intelligent Edge Network[J]. Telecommunication Engineering, 2024, 64(2): 325-332. | |
2 | 董康生, 胡伟波, 沈雁鸣, 等. 美军无人空战装备智能化发展动态及启示[J]. 现代防御技术, 2022, 50(4): 28-37. |
DONG Kangsheng, HU Weibo, SHEN Yanming, et al. Development and Implications of Intelligent Unmanned Combat Aerial Equipment by the US Army[J]. Modern Defence Technology, 2022, 50(4): 28-37. | |
3 | 杨云志. 中小型无人机AIS侦察系统应用技术[J]. 电讯技术, 2023, 63(1): 14-18. |
YANG Yunzhi. Applied Technology of Middle and Small-Sized UAV AIS Reconnaissance System[J]. Telecommunication Engineering, 2023, 63(1): 14-18. | |
4 | 潘楠, 刘海石, 陈启用, 等. 多基地多目标无人机协同任务规划算法研究[J]. 现代防御技术, 2021, 49(2): 49-56. |
PAN Nan, LIU Haishi, CHEN Qiyong, et al. Study on Cooperative Mission Planning Algorithm for Multi-Base and Multi-Target UAV[J]. Modern Defence Technology, 2021, 49(2): 49-56. | |
5 | RABTA B, WANKMÜLLER C, REINER G. A Drone Fleet Model for Last-Mile Distribution in Disaster Relief Operations[J]. International Journal of Disaster Risk Reduction, 2018, 28: 107-112. |
6 | 宋占福, 赵全习, 胡文志, 等. 无人机支援地面防空作战研究[J]. 现代防御技术, 2022, 50(5): 22-27. |
SONG Zhanfu, ZHAO Quanxi, HU Wenzhi, et al. Research on UAV Supporting Ground Air Defense Operations[J]. Modern Defence Technology, 2022, 50(5): 22-27. | |
7 | MUÑOZ J, LÓPEZ B, QUEVEDO F, et al. Multi UAV Coverage Path Planning in Urban Environments[J]. Sensors, 2021, 21(21): 7365. |
8 | WU Jianfa, WANG Honglun, LI Na, et al. Path Planning for Solar-Powered UAV in Urban Environment[J]. Neurocomputing, 2018, 275: 2055-2065. |
9 | HU Xinting, PANG Bizhao, DAI Fuqing, et al. Risk Assessment Model for UAV Cost-Effective Path Planning in Urban Environments[J]. IEEE Access, 2020, 8: 150162-150173. |
10 | 甯洋, 郑波, 龙足腾, 等. 基于CMPSO算法的无人机复杂三维路径规划[J]. 电光与控制, 2024, 31(4): 35-42. |
NING Yang, ZHENG Bo, LONG Zuteng, et al. Complex 3 D Path Planning for UAVs Based on CMPSO Algorithm[J]. Electronics Optics & Control, 2024, 31(4): 35-42. | |
11 | 胡莘婷, 吴宇. 面向城市飞行安全的无人机离散型多路径规划方法[J]. 航空学报, 2021, 42(6): 452-463. |
HU Shenting, WU Yu. Risk-Based Discrete Multi-Path Planning Method for UAVs in Urban Environments[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 452-463. | |
12 | 赵凯, 朱愿, 王任栋. 基于均值高程图的城市环境三维LiDAR点云地面分割方法[J]. 军事交通学院学报, 2018, 20(9): 80-84. |
ZHAO Kai, ZHU Yuan, WANG Rendong. Mean Elevation Map-Based Ground Segmentation Method for 3D LiDAR Point Cloud Under Urban Environment[J]. Journal of Military Transportation University, 2018, 20(9): 80-84. | |
13 | 宋海洋. 基于深度Q网络与A*算法的城市无人机路径规划研究[D]. 成都: 四川大学, 2023. |
SONG Haiyang. Research on Urban Unmanned Aerial Vehicle Path Planning Based on Deep Q-Network and A* Algorith[D]. Chengdu: Sichuan University, 2023. | |
14 | 李歆莹, 房建武. 城市环境下基于A*算法和DWA算法的无人机路径规划方法研究[J]. 无人系统技术, 2023, 6(2): 61-70. |
LI Xinying, FANG Jianwu. Research on UAV Path Planning by A* Algorithm and DWA Method in the Urban Environment[J]. Unmanned Systems Technology, 2023, 6(2): 61-70. | |
15 | 谢文勋. 城市环境下基于深度强化学习的无人机多维路径规划[D]. 广汉: 中国民用航空飞行学院, 2023. |
XIE Wenxun. Multidimensional Path Planning for UAV Based on Deep Reinforcement Learning in Urban Environments[D]. Guanghan: Civil Aviation Flight University of China, 2023. | |
16 | LIN Yucong, SARIPALLI S. Sampling-Based Path Planning for UAV Collision Avoidance[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(11): 3179-3192. |
17 | WANG Xueyuan, GURSOY M C, ERPEK T, et al. Learning-Based UAV Path Planning for Data Collection with Integrated Collision Avoidance[J]. IEEE Internet of Things Journal, 2022, 9(17): 16663-16676. |
18 | 许伦辉, 曾豫豪. 基于改进ACO和三次B样条曲线的路径规划[J]. 计算机仿真, 2022, 39(7): 407-411. |
XU Lunhui, ZENG Yuhao. Path Planning Based on Improved ACO and Cubic B-Spline Curve[J]. Computer Simulation, 2022, 39(7): 407-411. | |
19 | ALZAKARI S A, IZCI D, EKINCI S, et al. A New Control Scheme for Temperature Adjustment of Electric Furnaces Using a Novel Modified Electric Eel Foraging Optimizer[J]. AIMS Mathematics, 2024, 9(5): 13410-13438. |
20 | PHONG D H T, LINH N T. Optimize Power Generation of Thermal Generating Sources in Solving the Green Energies-Based Economic Load Dispatch Using Electric Eel Foraging Optimization[J]. World Journal of Advanced Engineering Technology and Sciences, 2024, 11(2): 368-378. |
21 | HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris Hawks Optimization: Algorithm and Applications[J]. Future Generation Computer Systems, 2019, 97: 849-872. |
[1] | Haonan QIU, Ming HE, Wei HAN, Xin XU, Haotian CHEN, Yiran WEI. A Phase Transition Control Method for UAV Swarm Based on Birds’ Behaviors [J]. Modern Defense Technology, 2025, 53(1): 11-22. |
[2] | Runze WU, Weishi PENG, Yixuan MA. Evaluation of Combat Effectiveness of Anti-UAV Swarm System Based on Improved TOPSIS Method [J]. Modern Defense Technology, 2025, 53(1): 63-72. |
[3] | Yanyan MA, Qiang LIN, Chuang NIU, Haida YANG. Simulation Method of Target Track Based on Embedded Particle Swarm Optimization Algorithm [J]. Modern Defense Technology, 2024, 52(5): 51-60. |
[4] | Jiangfeng YUE, Jinghua XIE. Research on Evaluation Method of Anti-UAV Schemes [J]. Modern Defense Technology, 2024, 52(5): 9-16. |
[5] | Jingyu HE, Jizheng LIU, Zhichen YANG, Dongdong WANG, Ping OU. Development and Testing of Multi Rotor Unmanned Aerial Vehicle Noise Source Tracking and Positioning System [J]. Modern Defense Technology, 2024, 52(3): 1-8. |
[6] | Zonghui WANG, Yunjun YANG, Hongrui ZHAO, Jiaxiang ZHAO. Numerical Simulation of Tilting Wing and Rotor UAV During Transition Flight [J]. Modern Defense Technology, 2024, 52(3): 9-19. |
[7] | Linan WANG, Guanghui WEN, Xiaojian YI. Finite-time Attitude Consensus Control of Multiple Unmanned Aerial Vehicles Under State Constraints [J]. Modern Defense Technology, 2024, 52(2): 124-131. |
[8] | Wenru FAN, Quanwei LIU, Bailing TIAN. Trajectory Tracking Control of Quadrotor UAV Based on Disturbance Compensation [J]. Modern Defense Technology, 2024, 52(2): 87-93. |
[9] | Zhen ZHOU, Yujie CAI, Yang YANG, Chuangwei WANG, Yunfei ZHANG. Review of World Air and Missile Defense in 2022 and Enlightenment to China’s Development [J]. Modern Defense Technology, 2023, 51(6): 26-35. |
[10] | Hanwen ZHANG, Xusheng GAN, Xiaolong WEI, Rongjia TONG. Research on Air Combat Maneuver Decision-Making of UAVs Based on Path-Game Hybrid Strategy [J]. Modern Defense Technology, 2023, 51(6): 87-96. |
[11] | Changhong QU, Yu SONG, Kun WANG, Qingyong CUI, Jiangyang CHEN. Deployment Method of Ground-Based Tactical Laser System for UAV Swarm Defense Based on PSO Algorithm [J]. Modern Defense Technology, 2023, 51(5): 15-24. |
[12] | Guodong YUAN, Ming HE, Wei HAN, Minggang YU, Mingyang CHENG. Research on Resilience Reconstruction of Community Network of Unmanned Aerial Vehicle Swarm [J]. Modern Defense Technology, 2023, 51(5): 50-58. |
[13] | Ruijie WANG, Dechao WANG, Lu FENG, Zhengdang ZHAO, Zheliang CHEN. Research Progress and Countermeasures Against UAV Swarm Operations Abroad [J]. Modern Defense Technology, 2023, 51(4): 1-9. |
[14] | Biyan LI, Shun HU. Formation Control of UAV Swarm with Bearing-Only Measurements [J]. Modern Defense Technology, 2023, 51(2): 55-61. |
[15] | Bao-jun ZHAO, Shi-tao CHEN, Da-xi LI, Ran ZHAO. Analysis of the Sixth Generation Fighter Development and Operational Concept [J]. Modern Defense Technology, 2022, 50(6): 19-25. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||