1 |
陈鑫雨. 基于机器学习的MFR工作模式识别研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
|
|
CHEN Xinyu. Research on MFR Working Pattern Recognition Based on Machine Learning[D]. Harbin: Harbin Engineering University, 2021.
|
2 |
王欣悦. 小样本雷达辐射源信号识别技术的研究与应用[D]. 北京: 北京邮电大学, 2021.
|
|
WANG Xinyue. Research and Application of Recognition Technology for Small Sample Radar Signals[D]. Beijing: Beijing University of Posts and Telecommunications, 2021.
|
3 |
张先才. 基于脉冲相干雷达的交通检测算法研究[D]. 东莞: 东莞理工学院, 2022.
|
|
ZHANG Xiancai. Research on Traffic Detection Algorithm Based on Pulse Coherent Radar[D]. Dongguan: Dongguan University of Technology, 2022.
|
4 |
KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks[C]∥5th International Conference on Learning Representations. New York, USA: ICLR, 2017.
|
5 |
SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling Relational Data with Graph Convolutional Networks[C]∥The Semantic Web. Cham: Springer International Publishing, 2017: 593-607.
|
6 |
唐玉文, 何明浩, 韩俊, 等. 机载火控雷达典型空-空工作模式浅析[J]. 现代防御技术, 2018, 46(6): 87-93, 101.
|
|
TANG Yuwen, HE Minghao, HAN Jun, et al. Typical Air to Air Operation Modes of Airborne Fire Control Radar[J]. Modern Defence Technology, 2018, 46(6): 87-93, 101.
|
7 |
阳榴, 朱卫纲, 吕守业, 等. 多功能雷达工作模式识别方法综述[J]. 电讯技术, 2020, 60(11): 1384-1390.
|
|
YANG Liu, ZHU Weigang, Shouye LÜ, et al. Review of Multi-Function Radar Mode Identification Methods[J]. Telecommunication Engineering, 2020, 60(11): 1384-1390.
|
8 |
DAVIS J, GOADRICH G. The Relationship Between Precision-Recall and ROC Curves[C]∥Proceedings of the 23rd International Conference on Machine Learning. New York: ACM, 2006: 233-240.
|
9 |
BUCKLEY C, VOORHEES E M. Evaluating Evaluation Measure Stability[J]. SIGIR Forum, 2017, 51(2): 235-242.
|
10 |
BOSER B E, GUYON I M, VAPNIK V N. A Training Algorithm for Optimal Margin Classifiers[C]∥Proceedings of the Fifth Annual Workshop on Computational Learning Theory. New York: ACM, 1992: 144-152.
|
11 |
BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification and Regression Trees(CART)[J]. Biometrics, 1984, 40(3): 358.
|
12 |
DOMINGOS P, PAZZANI M. Beyond Independence: Conditions for the optimality of the Simple Baysian Classifier[J]. Machine Learning, 1997, 29: 105-112.
|
13 |
KHANH NGUYEN H P, LONG DO V, DONG Q T. A Parallel Neural Network-Based Scheme for Radar Emitter Recognition[C]∥2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM). Piscataway: IEEE, 2020: 1-8.
|
14 |
KVASNOV A V. Methodology of Classification and Recognition of the Radar Emission Sources Based on Bayesian Programming[J]. IET Radar, Sonar & Navigation, 2020, 14(8): 1175-1182.
|
15 |
DONG Xiaoxuan, CHENG Siyi. Radar Working Modes Recognition Based on Discrete Process Neural Network[J]. IOP Conference Series: Materials Science and Engineering, 2018, 394(4): 042088.
|
16 |
LI Yunjie, ZHU Mengtao, MA Yihao, et al. Work Modes Recognition and Boundary Identification of MFR Pulse Sequences with a Hierarchical seq2seq LSTM[J]. IET Radar, Sonar & Navigation, 2020, 14(9): 1343-1353.
|
17 |
Zhangmeng LUI. Recognition of Multifunction Radars Via Hierarchically Mining and Exploiting Pulse Group Patterns[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4659-4672.
|
18 |
BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
|
19 |
VU T D, HO N H, YANG H J, et al. Non-White Matter Tissue Extraction and Deep Convolutional Neural Network for Alzheimer’s Disease Detection[J]. Soft Computing, 2018, 22(20): 6825-6833.
|
20 |
ZHANG Bin, ZHAO Lin, ZHANG Xiaoli. Three-Dimensional Convolutional Neural Network Model for Tree Species Classification Using Airborne Hyperspectral Images[J]. Remote Sensing of Environment, 2020, 247: 111938.
|