Modern Defense Technology ›› 2024, Vol. 52 ›› Issue (4): 1-15.DOI: 10.3969/j.issn.1009-086x.2024.04.001
• AIR SPACE DEFENSE SYSTEM AND WEAPON •
Chenhao ZHANG1, Yan ZHOU1, Yichao CAI1, Jiaqi GUO2
Received:
2023-03-16
Revised:
2023-07-03
Online:
2024-08-28
Published:
2024-08-26
作者简介:
张晨浩(1996-),男,湖北襄阳人。博士生,研究方向为态势评估,深度学习。
CLC Number:
Chenhao ZHANG, Yan ZHOU, Yichao CAI, Jiaqi GUO. A Review of Air Target Operational Intention Recognition Research[J]. Modern Defense Technology, 2024, 52(4): 1-15.
张晨浩, 周焰, 蔡益朝, 郭佳琦. 空中目标作战意图识别研究综述[J]. 现代防御技术, 2024, 52(4): 1-15.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2024.04.001
文献 | 特征数量 | 目标特征 |
---|---|---|
文献[ | 6 | 航向、距离、身份、机型、速度、高度 |
文献[ | 16 | 敌机加速度、敌机高度、敌机速度、敌机空战能力因子、我机加速度、我机高度、我机速度、我机空战能力因子、航向角、方位角、距离、对空雷达状态、对海雷达状态、干扰状态、受干扰状态、机动类型 |
文献[ | 11 | 飞行速度、高度、航向角、方位角、飞行加速度、雷达散射截面积、对空雷达状态、对海雷达状态、干扰状态、敌我识别应答、机动类型 |
文献[ | 7 | 飞行高度、速度、航向、重频、脉宽、载频、雷达散射截面积 |
文献[ | 13 | 敌机速度、敌机高度、敌机加速度、航向角、方位角、我机速度、我机加速度、双方距离、对空雷达状态、对海雷达状态、干扰 、受干扰状态、机动类型 |
文献[ | 5 | 速度、高度、距离、相对航向角、转向趋势 |
文献[ | 11 | 速度、加速度、高度、距离、航向角、方位角、雷达反射面积、机动类型、干扰状态、对空雷达状态、对海雷达状态 |
文献[ | 5 | 方位角、距离、水平速度、航向角、高度 |
文献[ | 17 | 敌机加速度、敌机高度、敌机速度、敌机空战能力因子、我机加速度、我机高度、我机速度、我机空战能力因子、航向角、方位角、距离、对空雷达状态、对海雷达状态、干扰状态、受干扰状态、机动类型、敌机类型 |
文献[ | 12 | 距离、速度、雷达散射截面积、高度、方位角、航向角、加速度、作战效能因子、电子干扰状态、对空雷达状态、对地雷达状态、舆论分析 |
文献[ | 3 | 速度、距离、方位角 |
文献[ | 10 | 速度、高度、距离、航向角、方位角、机动类型、干扰状态、受干扰状态、对空雷达状态、对海雷达状态 |
文献[ | 11 | 高度、敌我识别应答、目标类型、航向角、位置、加速度、对海雷达状态、对空雷达状态、速度、雷达散射截面积、目标战术类型 |
文献[ | 9 | 方位角、距离、航向角、速度、高度、对空雷达状态、对地雷达状态、电子干扰状态、雷达散射截面积 |
Table 1 Target features selection
文献 | 特征数量 | 目标特征 |
---|---|---|
文献[ | 6 | 航向、距离、身份、机型、速度、高度 |
文献[ | 16 | 敌机加速度、敌机高度、敌机速度、敌机空战能力因子、我机加速度、我机高度、我机速度、我机空战能力因子、航向角、方位角、距离、对空雷达状态、对海雷达状态、干扰状态、受干扰状态、机动类型 |
文献[ | 11 | 飞行速度、高度、航向角、方位角、飞行加速度、雷达散射截面积、对空雷达状态、对海雷达状态、干扰状态、敌我识别应答、机动类型 |
文献[ | 7 | 飞行高度、速度、航向、重频、脉宽、载频、雷达散射截面积 |
文献[ | 13 | 敌机速度、敌机高度、敌机加速度、航向角、方位角、我机速度、我机加速度、双方距离、对空雷达状态、对海雷达状态、干扰 、受干扰状态、机动类型 |
文献[ | 5 | 速度、高度、距离、相对航向角、转向趋势 |
文献[ | 11 | 速度、加速度、高度、距离、航向角、方位角、雷达反射面积、机动类型、干扰状态、对空雷达状态、对海雷达状态 |
文献[ | 5 | 方位角、距离、水平速度、航向角、高度 |
文献[ | 17 | 敌机加速度、敌机高度、敌机速度、敌机空战能力因子、我机加速度、我机高度、我机速度、我机空战能力因子、航向角、方位角、距离、对空雷达状态、对海雷达状态、干扰状态、受干扰状态、机动类型、敌机类型 |
文献[ | 12 | 距离、速度、雷达散射截面积、高度、方位角、航向角、加速度、作战效能因子、电子干扰状态、对空雷达状态、对地雷达状态、舆论分析 |
文献[ | 3 | 速度、距离、方位角 |
文献[ | 10 | 速度、高度、距离、航向角、方位角、机动类型、干扰状态、受干扰状态、对空雷达状态、对海雷达状态 |
文献[ | 11 | 高度、敌我识别应答、目标类型、航向角、位置、加速度、对海雷达状态、对空雷达状态、速度、雷达散射截面积、目标战术类型 |
文献[ | 9 | 方位角、距离、航向角、速度、高度、对空雷达状态、对地雷达状态、电子干扰状态、雷达散射截面积 |
文献 | 数量 | 意图空间 |
---|---|---|
文献[ | 6 | 侦察、攻击、支援、返航、我机、其他无威胁意图 |
文献[ | 7 | 监视、侦察、佯攻、攻击、突防、撤退、电子干扰 |
文献[ | 8 | 突防、攻击、电子干扰、运输、加油、民航飞行、预警探测、侦察 |
文献[ | 7 | 侦察、监视、佯攻、攻击、突防、诱敌、撤退 |
文献[ | 7 | 攻击、侦察、监视、佯攻、突防、防守、电子干扰 |
文献[ | 4 | 攻击、突防、撤离、搜索 |
文献[ | 6 | 攻击、佯攻、撤退、侦察、监视、电子干扰 |
文献[ | 5 | 攻击、监视、侦察、搜索、其他 |
文献[ | 5 | 攻击、侦察、护卫、运输、汇合 |
Table 2 Common intention space
文献 | 数量 | 意图空间 |
---|---|---|
文献[ | 6 | 侦察、攻击、支援、返航、我机、其他无威胁意图 |
文献[ | 7 | 监视、侦察、佯攻、攻击、突防、撤退、电子干扰 |
文献[ | 8 | 突防、攻击、电子干扰、运输、加油、民航飞行、预警探测、侦察 |
文献[ | 7 | 侦察、监视、佯攻、攻击、突防、诱敌、撤退 |
文献[ | 7 | 攻击、侦察、监视、佯攻、突防、防守、电子干扰 |
文献[ | 4 | 攻击、突防、撤离、搜索 |
文献[ | 6 | 攻击、佯攻、撤退、侦察、监视、电子干扰 |
文献[ | 5 | 攻击、监视、侦察、搜索、其他 |
文献[ | 5 | 攻击、侦察、护卫、运输、汇合 |
方法 | 目标数据要求 | 数据处理能力 | 模型泛化能力 | 结果可解释性 |
---|---|---|---|---|
规则和模板匹配 | 结构化数据 | 差 | 差 | 好 |
D-S证据理论 | 结构化数据 | 较差 | 差 | 较好 |
贝叶斯网络 | 结构化数据 | 一般 | 一般 | 较好 |
传统机器学习 | 结构化数据 | 较好 | 较好 | 一般 |
神经网络 | 结构化数据 非结构化数据 | 好 | 好 | 差 |
Table 3 Performance comparison of five types of air target intention recognition methods
方法 | 目标数据要求 | 数据处理能力 | 模型泛化能力 | 结果可解释性 |
---|---|---|---|---|
规则和模板匹配 | 结构化数据 | 差 | 差 | 好 |
D-S证据理论 | 结构化数据 | 较差 | 差 | 较好 |
贝叶斯网络 | 结构化数据 | 一般 | 一般 | 较好 |
传统机器学习 | 结构化数据 | 较好 | 较好 | 一般 |
神经网络 | 结构化数据 非结构化数据 | 好 | 好 | 差 |
1 | 韩崇昭, 朱洪艳, 段战胜, 等. 多源信息融合[M]. 2版. 北京: 清华大学出版社, 2010. |
HAN Chongzhao, ZHU Hongyan, DUAN Zhansheng, et al. Multi-source Information Fusion[M]. 2nd ed. Beijing: Tsinghua University Press, 2010. | |
2 | 王海旺, 史红权, 赵晓哲. 目标意图识别方法综述[C]∥2020中国系统仿真与虚拟现实技术高层论坛论文集. 北京: 中国系统仿真与虚拟现实技术层论坛组委会, 2020: 189-191. |
WANG Haiwang, SHI Hongquan, ZHAO Xiaozhe. A Summary of Target Intention Identification Methods[C]∥China System Simulation and Virtual Reality Technology High-Level Forum 2020. Beijing: Organizing Committee of China System Simulation and Virtual Reality Technology Forum, 2020: 189-191. | |
3 | 张子明, 荆福龙, 刘仲, 等. 未来空战中的意图理解技术综述[C]∥第十九届中国航空测控技术年会论文集. 西安: 航空工业测控技术发展中心, 2022: 400-404. |
ZHANG Ziming, JING Fulong, LIU Zhong, et al. Summary of Intention Comprehension Technology in Future Air Combat[C]∥Proceedings of the 19th China Aviation Measurement and Control Technology Annual Conference. Xi'an: Aviation Industry Measurement and Control Technology Development Center, 2022: 400-404. | |
4 | 高巍, 罗俊仁, 袁唯淋, 等. 面向对手建模的意图识别方法综述[J]. 网络与信息安全学报, 2021, 7(4): 86-100. |
GAO Wei, LUO Junren, YUAN Weilin, et al. Survey of Intention Recognition for Opponent Modeling[J]. Chinese Journal of Network and Information Security, 2021, 7(4): 86-100. | |
5 | 陈优敏, 李长云. 基于知识图谱的目标战术意图识别仿真[J]. 计算机仿真, 2019, 36(8): 1-4, 19. |
CHEN Youmin, LI Changyun. Simulation of Target Tactical Intention Recognition Based on Knowledge Map[J]. Computer Simulation, 2019, 36(8): 1-4, 19. | |
6 | 冷画屏, 吴晓锋, 殷卫兵. 舰艇战术意图识别技术[J]. 火力与指挥控制, 2007, 32(11): 35-37, 41. |
LENG Huaping, WU Xiaofeng, YIN Weibing. Research on Recognition Technique of Vessel Tactical Intentions[J]. Fire Control & Command Control, 2007, 32(11): 35-37, 41. | |
7 | 孙越林, 包磊. 基于D-S证据理论的海战场目标战术意图识别技术研究[J]. 舰船电子工程, 2012, 32(5): 48-51. |
SUN Yuelin, BAO Lei. Study on Recognition Technique of Targets' Tactical Intentions in Sea Battlefield Based on D-S Evidence Theory[J]. Ship Electronic Engineering, 2012, 32(5): 48-51. | |
8 | 李香亭. 态势估计中目标意图识别的研究与实现[D]. 太原: 中北大学, 2012. |
LI Xiangting. The Research and Implementation of Situation Assessment in the Target Intention Recognition[D]. Taiyuan: North University of China, 2012. | |
9 | 耿振余, 张建康. 基于贝叶斯网络的空中目标作战企图识别研究[J]. 现代防御技术, 2008, 36(6): 40-44. |
GENG Zhenyu, ZHANG Jiankang. Research on Air Target Combat Intention Inference Based on Bayesian Network[J]. Modern Defence Technology, 2008, 36(6): 40-44. | |
10 | 王端龙, 吴晓锋, 冷画屏. 对敌战场意图识别的若干问题[J]. 舰船电子工程, 2004, 24(6): 4-9. |
WANG Duanlong, WU Xiaofeng, LENG Huaping. Some Problems for Intention Assessment to Foe in Battle-Field[J]. Ship Electronic Engineering, 2004, 24(6): 4-9. | |
11 | 岳师光. 面向计算机生成兵力的意图识别建模与推理方法研究[D]. 长沙: 国防科学技术大学, 2016. |
YUE Shiguang. Research on Modeling and Inference of CGF-Oriented Intention Recognition[D]. Changsha: National University of Defense Technology, 2016. | |
12 | 朱波, 方立恭, 张小东. 基于贝叶斯网络的空中目标意图识别方法[J]. 现代防御技术, 2012, 40(2): 109-113. |
ZHU Bo, FANG Ligong, ZHANG Xiaodong. Intention Assessment to Aerial Target Based on Bayesian Network[J]. Modern Defence Technology, 2012, 40(2): 109-113. | |
13 | 余振翔, 胡笑旋, 夏维. 基于模糊动态贝叶斯网空战敌方作战企图识别[J]. 合肥工业大学学报(自然科学版), 2013, 36(10): 1210-1216, 1253. |
YU Zhenxiang, HU Xiaoxuan, XIA Wei. Foe Intention Inference in Air Combat Based on Fuzzy Dynamic Bayesian Network[J]. Journal of Hefei University of Technology(Natural Science), 2013, 36(10): 1210-1216, 1253. | |
14 | 冷画屏, 吴晓锋, 胡剑光, 等. 海上目标战术意图序贯识别技术研究[J]. 系统工程与电子技术, 2008, 30(3): 462-465. |
LENG Huaping, WU Xiaofeng, HU Jianguang, et al. Study on Sequential Recognition Technique of Marine Targets' Tactical Intentions[J]. Systems Engineering and Electronics, 2008, 30(3): 462-465. | |
15 | 何友, 王国宏, 陆大䋮, 等. 多传感器信息融合及应用[M] . 2版. 北京: 电子工业出版社, 2007. |
HE You, WANG Guohong, LU Dajin, et al. Multisensor Information Fusion with Applications[M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2007. | |
16 | SILVANDER J, ANGELIN L. Introducing Intents to the OODA-Loop[J]. Procedia Computer Science, 2019, 159: 878-883. |
17 | TENG Fei, SONG Yafei, WANG Gang, et al. A GRU-Based Method for Predicting Intention of Aerial Targets[J]. Computational Intelligence and Neuroscience, 2021, 2021: 6082242. |
18 | 周旺旺, 姚佩阳, 张杰勇, 等. 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018, 39(11): 195-203. |
ZHOU Wangwang, YAO Peiyang, ZHANG Jieyong, et al. Combat Intention Recognition for Aerial Targets Based on Deep Neural Network[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 195-203. | |
19 | 欧微, 柳少军, 贺筱媛, 等. 基于时序特征编码的目标战术意图识别算法[J]. 指挥控制与仿真, 2016, 38(6): 36-41. |
Wei OU, LIU Shaojun, HE Xiaoyuan, et al. Tactical Intention Recognition Algorithm Based on Encoded Temporal Features[J]. Command Control & Simulation, 2016, 38(6): 36-41. | |
20 | 刘钻东, 陈谋, 吴庆宪, 等. 非完备信息下无人机空战目标意图预测[J]. 中国科学(信息科学), 2020, 50(5): 704-717. |
LIU Zuandong, CHEN Mou, WU Qingxian, et al. Prediction of Unmanned Aerial Vehicle Target Intention Under Incomplete Information[J]. Scientia Sinica(Informationis), 2020, 50(5): 704-717. | |
21 | 徐建平, 张立凡, 韩德强. 基于模糊推理的空中目标意图识别[J]. 指挥信息系统与技术, 2020, 11(3): 44-48. |
XU Jianping, ZHANG Lifan, HAN Deqiang. Air Target Intention Recognition Based on Fuzzy Inference[J]. Command Information System and Technology, 2020, 11(3): 44-48. | |
22 | 马钰棠, 孙鹏, 张杰勇, 等. 样本不平衡下的空中群组意图识别方法[J]. 系统工程与电子技术, 2022, 44(12): 3747-3755. |
MA Yutang, SUN Peng, ZHANG Jieyong, et al. Air Group Intention Recognition Method Under Imbalance Samples[J]. Systems Engineering and Electronics, 2022, 44(12): 3747-3755. | |
23 | ZHANG Zheng, QU Yang, LIU Hongkun. Air Target Intention Recognition Based on Further Clustering and Sample Expansion[C]∥2018 37th Chinese Control Conference (CCC). Piscataway: IEEE, 2018: 3565-3569. |
24 | TENG Fei, GUO Xinpeng, SONG Yafei, et al. An Air Target Tactical Intention Recognition Model Based on Bidirectional GRU with Attention Mechanism[J]. IEEE Access, 2021, 9: 169122-169134. |
25 | 滕飞, 刘曙, 宋亚飞. BiLSTM-Attention: 一种空中目标战术意图识别模型[J]. 航空兵器, 2021, 28(5): 24-32. |
TENG Fei, LIU Shu, SONG Yafei. BiLSTM-Attention: An Air Target Tactical Intention Recognition Model[J]. Aero Weaponry, 2021, 28(5): 24-32. | |
26 | TENG Fei, SONG Yafei, GUO Xinpeng. Attention-TCN-BiGRU: An Air Target Combat Intention Recognition Model[J]. Mathematics, 2021, 9(19): 2412. |
27 | 孙亮, 于雷, 邹德鹏. Dempster-Shafer证据理论在目标意图预测中的应用[J]. 电光与控制, 2008, 15(3): 33-36. |
SUN Liang, YU Lei, ZOU Depeng. Application of Dempster-Shafer Evidence Theory in Target Intention Prediction[J]. Electronics Optics & Control, 2008, 15(3): 33-36. | |
28 | 孙亮, 于雷, 黄文卿, 等. 改进加权D-S证据理论在目标意图预测中的应用[J]. 空军工程大学学报(自然科学版), 2009, 10(1): 17-22. |
SUN Liang, YU Lei, HUANG Wenqing, et al. Application of Dempster-Shafer Evidence Theory to Target Intention Prediction[J]. Journal of Air Force Engineering University(Natural Science Edition), 2009, 10(1): 17-22. | |
29 | ZHOU Tongle, CHEN Mou, WANG Yuhui, et al. Information Entropy-Based Intention Prediction of Aerial Targets Under Uncertain and Incomplete Information[J]. Entropy, 2020, 22(3): 279. |
30 | SONG Yuan, ZHANG Xinhua, WANG Zhikai. Target Intention Inference Model Based on Variable Structure Bayesian Network[C]∥2009 International Conference on Computational Intelligence and Software Engineering. Piscataway: IEEE, 2009: 1-4. |
31 | XUE Junjie, ZHU Jie, XIAO Jiyang, et al. Panoramic Convolutional Long Short-Term Memory Networks for Combat Intension Recognition of Aerial Targets[J]. IEEE Access, 2020, 8: 183312-183323. |
32 | 黄洁, 刘伟, 赵拥军. 直觉云推理及其在空中目标意图分析中的应用[J]. 运筹与模糊学, 2014, 4(4): 60-69. |
HUANG Jie, LIU Wei, ZHAO Yongjun. Intuitionistic Cloud Reasoning and Its Application in Aerial Target Intention Analysis[J]. Operations Research and Fuzziology, 2014, 4(4): 60-69. | |
33 | 和钰, 常雷雷, 姜江, 等. 基于置信规则库的防空目标意图识别方法[J]. 火力与指挥控制, 2017, 42(9): 7-12. |
HE Yu, CHANG Leilei, JIANG Jiang, et al. Intension Identification in Air Defense Based on Belief Rule Base Expert System Under Expert Guidance[J]. Fire Control & Command Control, 2017, 42(9): 7-12. | |
34 | 赵福均, 周志杰, 胡昌华, 等. 基于置信规则库和证据推理的空中目标意图识别方法[J]. 电光与控制, 2017, 24(8): 15-19, 50. |
ZHAO Fujun, ZHOU Zhijie, HU Changhua, et al. Aerial Target Intention Recognition Approach Based on Belief-Rule-Base and Evidential Reasoning[J]. Electronics Optics & Control, 2017, 24(8): 15-19, 50. | |
35 | 尹江丽, 郭效芝. 空天态势推演与预测分析方法[C]∥第19届中国系统仿真技术及其应用学术年会(19th CCSSTA 2018)论文集. 合肥: 中国科学技术大学出版社, 2018: 293-296. |
YIN Jiangli, GUO Xiaozhi. Aerospace Situation Evolving and Predicting Methods[C]∥Proceedings of the 19th China System Simulation Technology and Its Applications Academic Annual Conference (19th CCSSTA 2018). Hefei: China University of Science and Technology Press, 2018: 293-296. | |
36 | 史浩宇, 赵克新. 无人作战飞机自主空战战术动作的分层识别方法[J]. 火力与指挥控制, 2019, 44(12): 51-55, 60. |
SHI Haoyu, ZHAO Kexin. The Hierarchical Recognition Method of Autonomous Air Combat Tactical Action of Unmanned Combat Aircraft[J]. Fire Control & Command Control, 2019, 44(12): 51-55, 60. | |
37 | 王海滨, 关欣, 衣晓, 等. 基于改进模糊置信规则的意图识别方法[J]. 电子与信息学报, 2023, 45(3): 941-948. |
WANG Haibin, GUAN Xin, YI Xiao, et al. An Intention Recognition Method Based on Fuzzy Belief-Rule-Base[J]. Journal of Electronics & Information Technology, 2023, 45(3): 941-948. | |
38 | SHAFER G. A Mathematical Theory of Evidence[M]. Princeton: Princeton University Press, 1976. |
39 | 吴海秀. 基于贝叶斯网络和D-S证据理论的态势估计方法[D]. 杭州: 杭州电子科技大学, 2013. |
WU Haixiu. A Method of Situation Assessment Based on Bayesian Network and D-S Evidence Theory[D]. Hangzhou: Hangzhou Dianzi University, 2013. | |
40 | 周志强, 钱建刚, 尹康银, 等. 一种基于D-S证据理论的目标意图预测方法[J]. 空军预警学院学报, 2014, 28(2): 116-118. |
ZHOU Zhiqiang, QIAN Jiangang, YIN Kangyin, et al. Method of Target Intention Prediction Based on D-S Evidence Theory[J]. Journal of Air Force Early Warning Academy, 2014, 28(2): 116-118. | |
41 | 王小平, 夏命辉, 林秦颖, 等. 接敌前基于D-S理论的空战意图预测[J]. 火力与指挥控制, 2016, 41(9): 185-188. |
WANG Xiaoping, XIA Minghui, LIN Qinying, et al. Combat Intent Forecast Based on D-S Evidence Theory Before Contecting the Enermy[J]. Fire Control & Command Control, 2016, 41(9): 185-188. | |
42 | 曹思远, 刘以安, 薛松. 改进高维数据相似度的目标意图识别方法[J]. 传感器与微系统, 2017, 36(5): 25-28. |
CAO Siyuan, LIU Yian, XUE Song. Target Tactical Intention Recognition Method of Improved High-Dimensional Data Similarity[J]. Transducer and Microsystem Technologies, 2017, 36(5): 25-28. | |
43 | 马静. 贝叶斯网络的战场作战意图评估方法[J]. 西安工业大学学报, 2010, 30(4): 397-401. |
MA Jing. Assessment of Operational Intention in Battlefield Based on Bayesian Network[J]. Journal of Xi'an Technological University, 2010, 30(4): 397-401. | |
44 | 杨璐, 刘付显, 朱丰, 等. 基于贝叶斯推理的海战场空中目标意图分层识别方法[J]. 火力与指挥控制, 2018, 43(7): 86-93. |
YANG Lu, LIU Fuxian, ZHU Feng, et al. Hierarchical Recognition Method of Hostile Air-Targets in Sea Battlefields Based on Bayesian Deduction[J]. Fire Control & Command Control, 2018, 43(7): 86-93. | |
45 | HAN T A, PEREIRA L M. State-of-the-Art of Intention Recognition and Its Use in Decision Making[J]. AI Communications, 2013, 26(2): 237-246. |
46 | XU Linxuan, QIAO Dianfeng, LIANG Yan, et al. A Novel DBN-Based Intention Inference Algorithm for Warship Air Combat[C]∥2020 IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Piscataway: IEEE, 2020: 916-921. |
47 | 国海峰, 刘宏强, 荘炎龙, 等. 基于CIDBN的战术活动识别模型及在线精确推理[J]. 北京航空航天大学学报, 2020, 46(6): 1097-1107. |
GUO Haifeng, LIU Hongqiang, ZHUANG Yanlong, et al. Tactical Activity Recognition Model and Online Accurate Inference Based on CIDBN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1097-1107. | |
48 | XU Yuheng, CHENG Siyi, ZHANG Hubiao, et al. Air Target Combat Intention Identification Based on IE-DSBN[C]∥2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI). Piscataway: IEEE, 2020: 36-40. |
49 | ZHANG Honghai, YAN Yongjie, LI Shan, et al. UAV Behavior-Intention Estimation Method Based on 4-D Flight-Trajectory Prediction[J]. Sustainability, 2021, 13(22): 12528. |
50 | 江佳运, 孙有朝, 晏传奇. 基于GASVM-HMM算法的飞行员操控意图识别[J]. 航空计算技术, 2023, 53(1): 43-47. |
JIANG Jiayun, SUN Youchao, YAN Chuanqi. Pilot Manipulation Intention Recognition Based on GASVM-HMM Algorithms[J]. Aeronautical Computing Technique, 2023, 53(1): 43-47. | |
51 | WANG Lei, LI Shizhong. Tactical Intention Recognition of Aerial Target Based on XGBoost Decision Tree[J]. Journal of Measurement Science and Instrumentation, 2018, 9(2): 148-152. |
52 | 牛晓博, 赵虎, 张玉册. 基于决策树的海战场舰艇意图识别[J]. 兵工自动化, 2010, 29(6): 44-46, 53. |
NIU Xiaobo, ZHAO Hu, ZHANG Yuce. Naval Vessel Intention Recognition Based on Decision Tree[J]. Ordnance Industry Automation, 2010, 29(6): 44-46, 53. | |
53 | MENG Guanglei, ZHAO Runnan, WANG Biao, et al. Target Tactical Intention Recognition in Multiaircraft Cooperative Air Combat[J]. International Journal of Aerospace Engineering, 2021, 2021(1): 9558838. |
54 | 胡智勇, 刘华丽, 龚淑君, 等. 基于随机森林的目标意图识别[J]. 现代电子技术, 2022, 45(19): 1-8. |
HU Zhiyong, LIU Huali, GONG Shujun, et al. Target Intention Recognition Based on Random Forest[J]. Modern Electronics Technique, 2022, 45(19): 1-8. | |
55 | ZHOU Wangwang, ZHANG Jieyong, GU Nannan, et al. Recognition of Combat Intention with Insufficient Expert Knowledge[C]∥Proceedings of the 3rd International Conference on Computational Modeling, Simulation and Applied Mathematics, Wuhan, China, 2018: 27-28. |
56 | 崔洋培, 吴庆宪, 陈谋. 基于自适应神经模糊推理系统的空中目标意图预测[C]∥第15届中国系统仿真技术及其应用学术会议论文集. 合肥: 中国科学技术大学出版社, 2014: 277-281. |
CUI Yangpei, WU Qingxian, CHEN Mou. Aerial Target Intention Prediction Based on Adaptive Neuro-fuzzy Inference System[C]∥The 15th Chinese Conference on System Simulation Technology and Application. Hefei: China University of Science and Technology Press, 2014: 277-281. | |
57 | 崔洋培. 基于目标意图的空空导弹智能制导与控制技术研究[D]. 南京: 南京航空航天大学, 2015. |
CUI Yangpei. Air-to-Air Missile Intelligent Guiding And Control Based on Target Intention[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. | |
58 | 贾苏元, 徐金钰, 王钰. 基于自适应神经网络模糊系统(ANFIS)的空中目标意图分类[J]. 电子测量技术, 2016, 39(12): 62-66. |
JIA Suyuan, XU Jinyu, WANG Yu. Classification of Air Target Intention Based on Adaptive Neural Network Fuzzy System (ANFIS)[J]. Electronic Measurement Technology, 2016, 39(12): 62-66. | |
59 | AHMED A A, MOHAMMED M F. SAIRF: A Similarity Approach for Attack Intention Recognition Using Fuzzy Min-Max Neural Network[J]. Journal of Computational Science, 2018, 25: 467-473. |
60 | 魏蔚, 王公宝. 基于径向基神经网络的侦察目标意图识别研究[J]. 舰船电子工程, 2018, 38(10): 37-40, 110. |
WEI Wei, WANG Gongbao. Detection and Recognition of Air Targets by Unmanned Aerial Vehicle Based on RBF Neural Network[J]. Ship Electronic Engineering, 2018, 38(10): 37-40, 110. | |
61 | 翟翔宇, 杨风暴, 吉琳娜, 等. 面向空中目标作战意图分析的标准化全连接残差网络模型[J]. 国外电子测量技术, 2019, 38(12): 1-6. |
ZHAI Xiangyu, YANG Fengbao, JI Linna, et al. Standardized Fully Connected Network and Residual Network Model for Combat Intention Analysis of Air Targets[J]. Foreign Electronic Measurement Technology, 2019, 38(12): 1-6. | |
62 | 朱丰, 胡晓峰, 吴琳, 等. 基于深度学习的战场态势高级理解模拟方法[J]. 火力与指挥控制, 2018, 43(8): 25-30. |
ZHU Feng, HU Xiaofeng, WU Lin, et al. Simulation Method of Battlefields Situation Senior Comprehension Based on Deep Learning[J]. Fire Control & Command Control, 2018, 43(8): 25-30. | |
63 | WANG Xun, LU Aiguo, LIU Jin, et al. Intelligent Interaction Model for Battleship Control Based on the Fusion of Target Intention and Operator Emotion[J]. Computers & Electrical Engineering, 2021, 92: 107196. |
64 | 王晟. 基于大数据处理的态势评估与威胁估计算法研究[D]. 成都: 电子科技大学, 2019. |
WANG Sheng. Research of Situation Assessment and Threat Assessment Algorithms Based on Big Data Processing Technology[D]. Chengdu: University of Electronic Science and Technology of China, 2019. | |
65 | 赵佳欢, 杨海明, 邱令存. 融合注意力机制的战术意图智能识别模型研究[J]. 航天控制, 2021, 39(3): 56-62, 81. |
ZHAO Jiahuan, YANG Haiming, QIU Lingcun. Research on Intelligent Recognition Model of Tactical Intent Combined with Attention Mechanism[J]. Aerospace Control, 2021, 39(3): 56-62, 81. | |
66 | QU Chongxiao, GUO Zichang, XIA Shaojie, et al. Intention Recognition of Aerial Target Based on Deep Learning[J]. Evolutionary Intelligence, 2024, 17(1): 303-311. |
67 | 欧微, 柳少军, 贺筱媛, 等. 战场对敌目标战术意图智能识别模型研究[J]. 计算机仿真, 2017, 34(9): 10-14, 19. |
Wei OU, LIU Shaojun, HE Xiaoyuan, et al. Study on the Intelligent Recognition Model of Enemy Target's Tactical Intention on Battlefield[J]. Computer Simulation, 2017, 34(9): 10-14, 19. | |
68 | 李宁安, 张剑, 周倜. 一种TensorFlow平台上目标意图识别模型设计与实现[J]. 舰船电子工程, 2019, 39(5): 26-29. |
LI Ningan, ZHANG Jian, ZHOU Ti. A Target Intent Recognition Model Designed and Implemented on TensorFlow Platform[J]. Ship Electronic Engineering, 2019, 39(5): 26-29. | |
69 | 钱钊, 刘钦, 鹿瑶, 等. 基于长短时神经网络的目标意图识别[J]. 太赫兹科学与电子信息学报, 2022, 20(11): 1156-1162. |
QIAN Zhao, LIU Qin, LU Yao, et al. Identification of Target's Combat Intention Based on Long Short Term Memory Network[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20(11): 1156-1162. | |
70 | 孙华东. 基于机器学习的多源数据态势评估技术研究[D]. 成都: 电子科技大学, 2020. |
SUN Huadong. Research on Situation Assessment Technology of Multi-Source Data Based on Machine Learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
71 | 李战武, 李双庆, 彭明毓, 等. 基于注意力机制改进的LSTM空战目标意图识别方法[J]. 电光与控制, 2023, 30(3): 1-7. |
LI Zhanwu, LI Shuangqing, PENG Mingyu, et al. An Air Combat Target Intention Recognition Method Based on LSTM Improved by Attention Mechanism[J]. Electronics Optics & Control, 2023, 30(3): 1-7. | |
72 | ZHANG Zhuo, WANG Hongfei, GENG Jie, et al. An Information Fusion Method Based on Deep Learning and Fuzzy Discount-Weighting for Target Intention Recognition[J]. Engineering Applications of Artificial Intelligence, 2022, 109: 104610. |
73 | 吴南方. 基于循环神经网络的集群意图识别方法研究[D]. 成都: 西南交通大学, 2019. |
WU Nanfang. Research on Cluster Intention Recognition Method Based on Recurrent Neural Network[D]. Chengdu: Southwest Jiaotong University, 2019. |
[1] | Xiaocheng SONG, Shuting FENG, Tao JIANG, Zhi LI. Tactical Intent Recognition of Complex Air Targets Based on PACA [J]. Modern Defense Technology, 2024, 52(3): 48-54. |
[2] | Qingtian ZHAO, Liwei LI, Xin CHEN, Lizhi HOU. Research and Enlightenment of Artificial Intelligence Defense Technology [J]. Modern Defense Technology, 2024, 52(3): 55-63. |
[3] | Wendong ZHAO, Mingzhi ZHANG, Shengming GUO. Operational Action Identification Method from Knowledge Association Perspective [J]. Modern Defense Technology, 2024, 52(3): 64-72. |
[4] | Baoyin YAO, Lei MAO, Zhibin WANG. Applications of Artificial Intelligence in Space Equipment [J]. Modern Defense Technology, 2023, 51(2): 33-42. |
[5] | Li CHEN, Fangfang LI, Changhong ZOU. Intension Recognition of Air-Defense Target Based on Dynamic Bayesian Network and Template Matching [J]. Modern Defense Technology, 2023, 51(2): 62-70. |
[6] | Xiangzheng JIANG, Kai LI, Guiru LI, Zhangpeng ZHAO. Research on Military Intelligent Decision Support System under Cloud Computation Environment [J]. Modern Defense Technology, 2023, 51(1): 35-41. |
[7] | Ying HE, Jia-qing WAN, Shan-shan WEI, Xiao-qiang HU. Application of Data-Free Intelligent Technology in the Transfer Alignment of Maneuver Concomitant Anti-aircraft [J]. Modern Defense Technology, 2022, 50(6): 50-58. |
[8] | Gang WU, Ke ZHANG. Finite Time Convergent Guidance Law for Intercepting Highly Maneuvering Targets [J]. Modern Defense Technology, 2022, 50(5): 43-51. |
[9] | Li-xing ZHAO, Xing-ming HOU, Zhao-wen XU, Lin-zi HE. Evaluation of Test Equipment Maintenance Ability Based on GA-Wavelet-BP Neural Network [J]. Modern Defense Technology, 2022, 50(2): 84-95. |
[10] | Bo-wen YUAN, Feng ZHU, Zhao-peng LIU, Li-wei WANG, Run-yu HUANG. Bayesian Evaluation Method for Detection Efficiency of Early Warning Detection System Based on Knowledge Graph [J]. Modern Defense Technology, 2022, 50(1): 74-80. |
[11] | SHI Duan-yang, LIN Qiang, HU Bing, CHEN Jia-xun. Radar Clutter Suppression Method Based on Neural Network Optimized by Genetic Algorithm [J]. Modern Defense Technology, 2021, 49(6): 74-83. |
[12] | XIONG Na, MEI Tian-yu, LI Fei. Reliability Analysis of Complex System Based on Interval Bayesian Network [J]. Modern Defense Technology, 2021, 49(6): 90-97. |
[13] | YAO Bao-yin, MAO Lei, XIAO Ke, QU Hui. Applications of Artificial Intelligence on the Optical Earth Observation [J]. Modern Defense Technology, 2021, 49(5): 26-31. |
[14] | JI Zheng-yi, CHEN Yang, SHEN Pei-zhi, HAN Xian-ping, QI Hong-kun. Decision Tree Integration Method Application in Effectiveness Evaluation of Anti-Ship Missile Weapon System [J]. Modern Defense Technology, 2021, 49(4): 15-23. |
[15] | NIU Hao-nan, WANG Wen-can, LIU Qing-bo. Radar Radiation Source Identification Based on Convolution Neural Network [J]. Modern Defense Technology, 2021, 49(3): 130-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||