Modern Defense Technology ›› 2025, Vol. 53 ›› Issue (1): 164-172.DOI: 10.3969/j.issn.1009-086x.2025.01.018
• SIMULATION TECHNOLOGY • Previous Articles Next Articles
Xinyu LIU1, Haiting SHEN2, Rui GUO1, Qin ZHANG1
Received:
2023-10-12
Revised:
2024-02-24
Online:
2025-02-28
Published:
2025-02-27
作者简介:
刘欣宇(1994-),女,北京人。工程师,博士,研究方向为人工智能。
CLC Number:
Xinyu LIU, Haiting SHEN, Rui GUO, Qin ZHANG. Method for Transmission of Point Cloud and Tele-presence of Map Under Wireless and Low Bandwidth Condition[J]. Modern Defense Technology, 2025, 53(1): 164-172.
刘欣宇, 申海艇, 郭睿, 张琴. 无线低带宽条件下点云传输和地图远程呈现方法[J]. 现代防御技术, 2025, 53(1): 164-172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2025.01.018
RosBag(NCLT数据集) | 2012-04-29 | 2012-06-15 | 2012-09-28 | 2013-01-10 | NCLT |
---|---|---|---|---|---|
帧数 | 25 819 | 32 954 | 46 466 | 10 201 | 47 231 |
平均点云个数 | 6 009 | 7 271 | 6 543 | 5 789 | 6 284 |
压缩前平均传输时间/ms | 3.13 | 3.84 | 3.31 | 2.76 | 3.25 |
压缩前平均传输带宽/(Kb·s-1) | 53.26 | 59.71 | 56.72 | 48.54 | 54.60 |
平均压缩时间/ms | 0.31 | 0.39 | 0.35 | 0.28 | 0.32 |
压缩后平均传输时间/ms | 2.92 | 3.64 | 3.31 | 2.61 | 3.17 |
平均解压缩时间/ms | 0.16 | 0.24 | 0.19 | 0.12 | 0.17 |
压缩算法总时间/ms | 3.39 | 4.27 | 3.85 | 3.01 | 3.58 |
压缩后平均传输带宽/(Kb·s-1) | 9.94 | 11.23 | 10.34 | 9.37 | 10.15 |
Table 1 Comparison of transmission performance before and after point cloud compression
RosBag(NCLT数据集) | 2012-04-29 | 2012-06-15 | 2012-09-28 | 2013-01-10 | NCLT |
---|---|---|---|---|---|
帧数 | 25 819 | 32 954 | 46 466 | 10 201 | 47 231 |
平均点云个数 | 6 009 | 7 271 | 6 543 | 5 789 | 6 284 |
压缩前平均传输时间/ms | 3.13 | 3.84 | 3.31 | 2.76 | 3.25 |
压缩前平均传输带宽/(Kb·s-1) | 53.26 | 59.71 | 56.72 | 48.54 | 54.60 |
平均压缩时间/ms | 0.31 | 0.39 | 0.35 | 0.28 | 0.32 |
压缩后平均传输时间/ms | 2.92 | 3.64 | 3.31 | 2.61 | 3.17 |
平均解压缩时间/ms | 0.16 | 0.24 | 0.19 | 0.12 | 0.17 |
压缩算法总时间/ms | 3.39 | 4.27 | 3.85 | 3.01 | 3.58 |
压缩后平均传输带宽/(Kb·s-1) | 9.94 | 11.23 | 10.34 | 9.37 | 10.15 |
RosBag | 2012-04-29 | 2012-06-15 | 2012-09-28 | 2013-01-10 | NCLT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
指标 | ET | DT | BR | ET | DT | BR | ET | DT | BR | ET | DT | BR | ET | DT | BR |
G-PCC-octree | 0.57 | 0.11 | 2.54 | 0.62 | 0.17 | 2.66 | 0.59 | 0.15 | 2.83 | 0.53 | 0.05 | 2.78 | 0.59 | 0.12 | 2.55 |
Learned-PCGC | 3.41 | 3.01 | 3.43 | 3.46 | 3.09 | 4.54 | 4.43 | 3.05 | 4.76 | 3.37 | 2.95 | 4.39 | 3.52 | 3.03 | 3.44 |
PCGCv2 | 0.58 | 0.22 | 3.05 | 0.62 | 0.27 | 3.12 | 0.60 | 0.25 | 3.35 | 0.54 | 0.19 | 2.96 | 0.60 | 0.23 | 3.06 |
PCGFormer | 0.74 | 0.46 | 2.79 | 0.78 | 0.52 | 2.93 | 0.76 | 0.49 | 2.81 | 0.67 | 0.41 | 2.42 | 0.76 | 0.49 | 2.80 |
本文 | 0.31 | 0.16 | 5.36 | 0.39 | 0.24 | 5.32 | 0.35 | 0.19 | 5.49 | 0.28 | 0.12 | 5.18 | 0.32 | 0.17 | 5.38 |
Table 2 Performance comparison of different point cloud compression algoithms
RosBag | 2012-04-29 | 2012-06-15 | 2012-09-28 | 2013-01-10 | NCLT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
指标 | ET | DT | BR | ET | DT | BR | ET | DT | BR | ET | DT | BR | ET | DT | BR |
G-PCC-octree | 0.57 | 0.11 | 2.54 | 0.62 | 0.17 | 2.66 | 0.59 | 0.15 | 2.83 | 0.53 | 0.05 | 2.78 | 0.59 | 0.12 | 2.55 |
Learned-PCGC | 3.41 | 3.01 | 3.43 | 3.46 | 3.09 | 4.54 | 4.43 | 3.05 | 4.76 | 3.37 | 2.95 | 4.39 | 3.52 | 3.03 | 3.44 |
PCGCv2 | 0.58 | 0.22 | 3.05 | 0.62 | 0.27 | 3.12 | 0.60 | 0.25 | 3.35 | 0.54 | 0.19 | 2.96 | 0.60 | 0.23 | 3.06 |
PCGFormer | 0.74 | 0.46 | 2.79 | 0.78 | 0.52 | 2.93 | 0.76 | 0.49 | 2.81 | 0.67 | 0.41 | 2.42 | 0.76 | 0.49 | 2.80 |
本文 | 0.31 | 0.16 | 5.36 | 0.39 | 0.24 | 5.32 | 0.35 | 0.19 | 5.49 | 0.28 | 0.12 | 5.18 | 0.32 | 0.17 | 5.38 |
1 | 董康生, 胡伟波, 沈雁鸣, 等. 美军无人空战装备智能化发展动态及启示[J]. 现代防御技术, 2022, 50(4): 28-37. |
DONG Kangsheng, HU Weibo, SHEN Yanming, et al. Development and Implications of Intelligent Unmanned Combat Aerial Equipment by the US Army[J]. Modern Defence Technology, 2022, 50(4): 28-37. | |
2 | 高翔. 视觉SLAM十四讲: 从理论到实践[M]. 北京: 电子工业出版社, 2017. |
GAO Xiang. Fourteen Lectures on Visual SLAM: From Theory to Practice[M]. Beijing: Publishing House of Electronics Industry, 2017. | |
3 | 马跃龙, 赵勇, 曹雪峰. 一种基于单目SLAM的无人机序列图像拼接方法[J]. 系统仿真学报, 2016, 28(10): 2349-2355. |
MA Yuelong, ZHAO Yong, CAO Xuefeng. Mono-SLAM Based Method for Stitching Images of Sequence from UAV[J]. Journal of System Simulation, 2016, 28(10): 2349-2355. | |
4 | 焦嵩鸣, 姚鑫, 丁辉, 等. 适应于环境空间变化的激光雷达SLAM建图方法[J]. 系统仿真学报, 2023, 35(8): 1788-1798. |
JIAO Songming, YAO Xin, DING Hui, et al. Lidar SLAM Mapping Method Adapted to Environmental Spatial Changes[J]. Journal of System Simulation, 2023, 35(8): 1788-1798. | |
5 | 艾达, 卢洪颖, 杨玉蓉, 等. 三维点云数据压缩技术研究综述[J]. 西安邮电大学学报, 2021, 26(1): 90-96. |
AI Da, LU Hongying, YANG Yurong, et al. A Brief Overview 3D Point Cloud Data Compression Technology[J]. Journal of Xi'an University of Posts and Telecommunications, 2021, 26(1): 90-96. | |
6 | DE OLIVEIRA RENTE P, BRITES C, ASCENSO J, et al. Graph-Based Static 3D Point Clouds Geometry Coding[J]. IEEE Transactions on Multimedia, 2019, 21(2): 284-299. |
7 | SCHNABEL R, KLEIN R. Octree-Based Point-Cloud Compression[C]∥Proceedings of the 3rd Eurographics / IEEE VGTC Conference on Point-Based Graphics. Goslar: Eurographics Association, 2006: 111-121. |
8 | KATHARIYA B, LI Li, LI Zhu, et al. Scalable Point Cloud Geometry Coding with Binary Tree Embedded Quadtree[C]∥2018 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2018: 1-6. |
9 | Google. Draco[EB/OL]. (2022-02-18) [2022-03-24]. . |
10 | XU Wei, ZHANG Fu. FAST-LIO: A Fast, Robust LiDAR-Inertial Odometry Package by Tightly-Coupled Iterated Kalman Filter[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3317-3324. |
11 | KIM G. SC-A-LOAM[EB/OL]. [2023-05-22]. . |
12 | JURIĆ A, KENDEŠ F, MARKOVIĆ I, et al. A Comparison of Graph Optimization Approaches for Pose Estimation in SLAM[C]∥2021 44th International Convention on Information, Communication and Electronic Technology (MIPRO). Piscataway: IEEE, 2021: 1113-1118. |
13 | KIM G, KIM A. Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2018: 4802-4809. |
14 | 王阳. 基于图优化的移动机器人SLAM建图算法研究[D]. 杭州: 浙江大学, 2022. |
WANG Yang. Research on SLAM Mapping Algorithm of Mobile Robot Based on Graph Optimization[D]. Hangzhou: Zhejiang University, 2022. | |
15 | ROSSIGNAC J. 3D Compression Made Simple: Edgebreaker with Zip & Wrap on a Corner-Table[C]∥Proceedings International Conference on Shape Modeling and Applications. Piscataway: IEEE, 2001: 278-283. |
16 | DUDA J. Asymmetric Numeral Systems: Entropy Coding Combining Speed of Huffman Coding with Compression Rate of Arithmetic Coding[EB/OL]. (2014-01-06) [2020-05-10]. . |
17 | Paplhjak. Draco_Point_Cloud_Transport[EB/OL]. [2023-12-23]. . |
18 | 聂晓旭, 于凤芹, 钦道理. 基于Protobuf的数据传输协议[J]. 计算机系统应用, 2015, 24(8): 112-116. |
NIE Xiaoxu, YU Fengqin, QIN Daoli. Data Transmission Protocol Based on Protobuf[J]. Computer Systems & Applications, 2015, 24(8): 112-116. | |
19 | RoboSense-LiDAR. Rs_Driver[EB/OL]. [2023-12-01]. . |
20 | CARLEVARIS-BIANCO N, USHANI A K, EUSTICE R M. University of Michigan North Campus Long-Term Vision and Lidar Dataset[J]. The International Journal of Robotics Research, 2016, 35(9): 1023-1035. |
21 | WANG Jianqiang, ZHU Hao, MA Zhan, et al. Learned Point Cloud Geometry Compression[EB/OL]. ([2019-09-26) [2023-02-03]. . |
22 | WANG Jianqiang, DING Dandan, LI Zhu, et al. Multiscale Point Cloud Geometry Compression[C]∥2021 Data Compression Conference (DCC). Piscataway: IEEE, 2021: 73-82. |
23 | GRAZIOSI D, NAKAGAMI O, KUMA S, et al. An Overview of Ongoing Point Cloud Compression Standardization Activities: Video-Based (V-PCC) and Geometry-Based (G-PCC)[J]. APSIPA Transactions on Signal and Information Processing, 2020, 9: e13. |
24 | LIU Gexin, WANG Jianqiang, DING Dandan, et al. PCGFormer: Lossy Point Cloud Geometry Compression via Local Self-Attention[C]∥2022 IEEE International Conference on Visual Communications and Image Processing (VCIP). Piscataway: IEEE, 2022: 1-5. |
[1] | Shihao LIU, Xiaozhou CUI, Feifei WANG, Xiaofei HUANG, Cong WANG. Research of Hard and Soft Killing Weapon Target Assignment Based on Hybrid Particle Swarm Optimization [J]. Modern Defense Technology, 2025, 53(1): 97-107. |
[2] | Ke LIU. Research on the Application of Space-Based Information Support in Ultra-Long-Range Air Defense Operations [J]. Modern Defense Technology, 2024, 52(6): 9-16. |
[3] | Xianliang MENG, Bo ZHANG, Mingliang ZHANG, Jin WANG, Le MENG, Ming XUE. Evaluation of Contribution Rate of Terminal Defense Equipment Architecture Based on SEM [J]. Modern Defense Technology, 2024, 52(5): 1-8. |
[4] | Xiaocheng SONG, Shuting FENG, Tao JIANG, Zhi LI. Tactical Intent Recognition of Complex Air Targets Based on PACA [J]. Modern Defense Technology, 2024, 52(3): 48-54. |
[5] | Xiaobo LI, Mengyi WANG, Yongyi LIAO, Zhijie HUANG, Tao WANG, Weiping WANG. An Architecture Design Method for Intelligent Air and Space Defense Combat System of Systems [J]. Modern Defense Technology, 2024, 52(2): 1-12. |
[6] | Baojie HU, Fuhong GONG, Fangjun HE, Pan WANG. An Integrated Training Implementation Method Based on Virtual-Real Combination of Inside and Outside Field [J]. Modern Defense Technology, 2024, 52(1): 16-23. |
[7] | Yuqian WANG, Yajie CAO, Xiaoqiong SHE, Yongyi LIAO. Research on U.S. Military’s Kill Web Concept and Inspiration to Chinese Air Defense Combat Equipment System [J]. Modern Defense Technology, 2023, 51(6): 1-8. |
[8] | Shan WANG, Hua ZHANG, Haowen SONG, Xiao CHEN. Coupling Coordination Analysis of Equipment Quality Chain Based on SDS-Coupling Coordination Degree Model [J]. Modern Defense Technology, 2023, 51(6): 133-145. |
[9] | Weijun YU, Zhaohui SHI. Research on Rationality Evaluation of Anti-Missile Equipment Configuration [J]. Modern Defense Technology, 2023, 51(6): 18-25. |
[10] | Xin JIN. Application Mode and Key Technologies of Mentor-Led Intelligent Command Decision-Making [J]. Modern Defense Technology, 2023, 51(6): 62-68. |
[11] | Wenzhuo TANG, Tianqi CAI, Changhui ZHUANG, Rui MIN. Equipment System of Systems(SoS)Engineering Method and Digitalization [J]. Modern Defense Technology, 2023, 51(4): 10-15. |
[12] | Mengqing HOU, Siliang HUA, Jiuzhou ZHOU, Jia HAO. Research on Time Unity Technology for Live Combat Training [J]. Modern Defense Technology, 2023, 51(1): 17-25. |
[13] | Zhe YAN, Min-le WANG, Jiang-peng WANG, Feng-xuan WU, Shao-qiang YAN. Scheduling of Special Support Vehicles at Naval Aviation Station with Time Windows [J]. Modern Defense Technology, 2022, 50(6): 117-123. |
[14] | Sen LI, Hai-lin TIAN, Gang WANG, Da-xi LI, Jing WU. Research on IAMD Battle Command System(IBCS)of the US [J]. Modern Defense Technology, 2022, 50(4): 84-100. |
[15] | Wei LI, Ying-qi LU. Threat Assessment Method of Air Attack Target Based on Clustering Combination Weighting [J]. Modern Defense Technology, 2022, 50(3): 17-24. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||