Modern Defense Technology ›› 2024, Vol. 52 ›› Issue (5): 162-172.DOI: 10.3969/j.issn.1009-086x.2024.05.018
• INTEGRATED TEST, LAUNCH CONTROL TECHNOLOGY • Previous Articles
Jiajun CHEN1,2, Bing HU1, Duanyang SHI3, Lijia YANG4
Received:
2023-06-01
Revised:
2023-10-10
Online:
2024-10-28
Published:
2024-11-01
作者简介:
陈佳君(1993-),女,河南兰考人。硕士生,研究方向为预警装备论证、试验与保障指挥。
CLC Number:
Jiajun CHEN, Bing HU, Duanyang SHI, Lijia YANG. Radar Equipment Testability Evaluation Method Based on Improved TOPSIS-RSR[J]. Modern Defense Technology, 2024, 52(5): 162-172.
陈佳君, 胡冰, 施端阳, 杨丽佳. 基于改进TOPSIS-RSR的雷达装备测试性评估方法[J]. 现代防御技术, 2024, 52(5): 162-172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.xdfyjs.cn/EN/10.3969/j.issn.1009-086x.2024.05.018
标度 | 含义 |
---|---|
0.994 | |
0.881 | |
0.767 | |
0.648 | |
0.5 | |
0.938,0.824, 0.708,0.583 | 介于上述两判断的中间值 |
标度互补 | 若 |
Table 1 Meaning of improved FAHP scale
标度 | 含义 |
---|---|
0.994 | |
0.881 | |
0.767 | |
0.648 | |
0.5 | |
0.938,0.824, 0.708,0.583 | 介于上述两判断的中间值 |
标度互补 | 若 |
评估指标 | 方案Ⅰ | 方案Ⅱ | 方案Ⅲ | 方案Ⅳ |
---|---|---|---|---|
参数监测率B11/% | 98 | 95 | 94 | 97 |
状态监控率B12/% | 93 | 90 | 91 | 96 |
站级平均人工参数 检测时间B13/min | 13 | 12 | 15 | 13 |
故障检测率B21/% | 92 | 93 | 92 | 97 |
故障隔离率B22/% | 90 | 92 | 90 | 96 |
虚警率B23/% | 3.0 | 2.5 | 3.2 | 3.0 |
故障检测时间B24/min | 1.2 | 0.9 | 1 | 0.8 |
故障隔离时间B25/min | 2.5 | 2.3 | 3 | 2.6 |
故障隔离模糊度B26 | 4 | 3 | 3 | 2 |
误拆率B27/% | 5.0 | 4.0 | 5.5 | 4.5 |
BITE覆盖率B28/% | 85 | 89 | 86 | 93 |
测试可控性B31 | 7.5 | 8.7 | 7.6 | 8.5 |
测试观测性B32 | 8.2 | 9.2 | 8.0 | 8.5 |
UUT与外部测试设备接口兼容性B33 | 8.5 | 7.5 | 8.0 | 9.0 |
结构设计和功能划分合理性B34 | 8.7 | 9.0 | 8.6 | 8.0 |
软件测试性B35 | 7.8 | 8.9 | 7.7 | 8.2 |
测试安全性B36 | 7.6 | 7.0 | 7.8 | 8.0 |
测试人员数质量B41 | 8.5 | 9.0 | 8.2 | 8.6 |
技术资料齐套率B42/% | 80 | 74 | 80 | 85 |
随机测试设备 通用率B43/% | 85 | 80 | 90 | 85 |
随机测试设备 齐套率B44/% | 75 | 80 | 76 | 85 |
故障信息完整性B45 | 8.6 | 8.0 | 8.8 | 8.5 |
Table 2 Testability evaluation index value of radar equipment in each scheme
评估指标 | 方案Ⅰ | 方案Ⅱ | 方案Ⅲ | 方案Ⅳ |
---|---|---|---|---|
参数监测率B11/% | 98 | 95 | 94 | 97 |
状态监控率B12/% | 93 | 90 | 91 | 96 |
站级平均人工参数 检测时间B13/min | 13 | 12 | 15 | 13 |
故障检测率B21/% | 92 | 93 | 92 | 97 |
故障隔离率B22/% | 90 | 92 | 90 | 96 |
虚警率B23/% | 3.0 | 2.5 | 3.2 | 3.0 |
故障检测时间B24/min | 1.2 | 0.9 | 1 | 0.8 |
故障隔离时间B25/min | 2.5 | 2.3 | 3 | 2.6 |
故障隔离模糊度B26 | 4 | 3 | 3 | 2 |
误拆率B27/% | 5.0 | 4.0 | 5.5 | 4.5 |
BITE覆盖率B28/% | 85 | 89 | 86 | 93 |
测试可控性B31 | 7.5 | 8.7 | 7.6 | 8.5 |
测试观测性B32 | 8.2 | 9.2 | 8.0 | 8.5 |
UUT与外部测试设备接口兼容性B33 | 8.5 | 7.5 | 8.0 | 9.0 |
结构设计和功能划分合理性B34 | 8.7 | 9.0 | 8.6 | 8.0 |
软件测试性B35 | 7.8 | 8.9 | 7.7 | 8.2 |
测试安全性B36 | 7.6 | 7.0 | 7.8 | 8.0 |
测试人员数质量B41 | 8.5 | 9.0 | 8.2 | 8.6 |
技术资料齐套率B42/% | 80 | 74 | 80 | 85 |
随机测试设备 通用率B43/% | 85 | 80 | 90 | 85 |
随机测试设备 齐套率B44/% | 75 | 80 | 76 | 85 |
故障信息完整性B45 | 8.6 | 8.0 | 8.8 | 8.5 |
方案 | 熵值法 | 排序 | 相对贴近 距离TOPSIS 算法 | 排序 | 相对熵TOPSIS 算法 | 排序 |
---|---|---|---|---|---|---|
Ⅰ | 0.143 2 | 3 | 0.012 3 | 4 | 0.351 6 | 3 |
Ⅱ | 0.307 8 | 2 | 0.002 6 | 2 | 0.565 8 | 2 |
Ⅲ | 0.095 2 | 4 | 0.012 1 | 3 | 0.207 2 | 4 |
Ⅳ | 0.453 8 | 1 | 0 | 1 | 0.665 2 | 1 |
Table 3 Comparison of results of three evaluation methods
方案 | 熵值法 | 排序 | 相对贴近 距离TOPSIS 算法 | 排序 | 相对熵TOPSIS 算法 | 排序 |
---|---|---|---|---|---|---|
Ⅰ | 0.143 2 | 3 | 0.012 3 | 4 | 0.351 6 | 3 |
Ⅱ | 0.307 8 | 2 | 0.002 6 | 2 | 0.565 8 | 2 |
Ⅲ | 0.095 2 | 4 | 0.012 1 | 3 | 0.207 2 | 4 |
Ⅳ | 0.453 8 | 1 | 0 | 1 | 0.665 2 | 1 |
方案 | RSR1 | 方案 | RSR2 | ||||
---|---|---|---|---|---|---|---|
Ⅲ | 0.207 2 | Ⅳ | 0 | 1 | 1 | 0.250 0 | 4.325 5 |
Ⅰ | 0.351 6 | Ⅱ | 0.002 6 | 1 | 2 | 0.500 0 | 5.000 0 |
Ⅱ | 0.565 8 | Ⅰ | 0.012 1 | 1 | 3 | 0.750 0 | 5.674 5 |
Ⅳ | 0.665 2 | Ⅲ | 0.012 3 | 1 | 4 | 0.937 5 | 6.534 1 |
Table 4 RSR distribution and corresponding probability unit value
方案 | RSR1 | 方案 | RSR2 | ||||
---|---|---|---|---|---|---|---|
Ⅲ | 0.207 2 | Ⅳ | 0 | 1 | 1 | 0.250 0 | 4.325 5 |
Ⅰ | 0.351 6 | Ⅱ | 0.002 6 | 1 | 2 | 0.500 0 | 5.000 0 |
Ⅱ | 0.565 8 | Ⅰ | 0.012 1 | 1 | 3 | 0.750 0 | 5.674 5 |
Ⅳ | 0.665 2 | Ⅲ | 0.012 3 | 1 | 4 | 0.937 5 | 6.534 1 |
等级 | 分档结果 | ||
---|---|---|---|
差 | <3.5 | <0.041 95 | |
中 | [3.5,5) | [0.041 95,0.364 9) | 方案Ⅰ、Ⅲ |
良 | [5,6.5) | [0.364 9,0.687 85) | 方案Ⅱ、Ⅳ |
优 |
Table 5 Classification of radar equipment testability evaluation results
等级 | 分档结果 | ||
---|---|---|---|
差 | <3.5 | <0.041 95 | |
中 | [3.5,5) | [0.041 95,0.364 9) | 方案Ⅰ、Ⅲ |
良 | [5,6.5) | [0.364 9,0.687 85) | 方案Ⅱ、Ⅳ |
优 |
1 | DU Xiaoshuai, HU Bing, QIN Jian. Testability Analysis Method of Radar Equipment Based on Dependency Model[J]. Journal of Physics: Conference Series, 2021, 2093(1): 012031. |
2 | 李宗吉, 林海华, 孙亚平, 等. 鱼雷装备三维综合测试性参数体系构建[J]. 舰船电子工程, 2022, 42(9): 92-97. |
LI Zongji, LIN Haihua, SUN Yaping, et al. Construction of Three-Dimensional Comprehensive Testability Parameter System for Torpedo Equipment[J]. Ship Electronic Engineering, 2022, 42(9): 92-97. | |
3 | 常春贺, 曹鹏举, 杨江平. 基于全寿命周期的雷达装备测试性综合评估[J]. 现代雷达, 2012, 34(3): 12-17. |
CHANG Chunhe, CAO Pengju, YANG Jiangping. A Study on Testability Synthetic Evaluation Method of Radar Equipment Based on Life Cyele[J]. Modern Radar, 2012, 34(3): 12-17. | |
4 | 陈然, 连光耀, 王凯, 等. 面向LRM体系的测试性验证指标体系研究[J]. 计算机测量与控制, 2016, 24(10): 278-281. |
CHEN Ran, LIAN Guangyao, WANG Kai, et al. Research on Index System of Testability Verification for LRM System[J]. Computer Measurement & Control, 2016, 24(10): 278-281. | |
5 | 常春贺, 杨江平. 基于层次模糊决策的雷达装备测试性综合评估[J]. 雷达科学与技术, 2011, 9(4): 293-299. |
CHANG Chunhe, YANG Jiangping. A Testability Synthetic Evaluation Method of Radar Equipment Based on Analytic Hierarchy Process and Fuzzy Mathematic Theory[J]. Radar Science and Technology, 2011, 9(4): 293-299. | |
6 | 余龙海, 史贤俊. 基于AHP-FCE的导弹装备测试性评估[J]. 测控技术, 2015, 34(12): 122-126. |
YU Longhai, SHI Xianjun. Testability Evaluation of Missile Equipment Based on AHP-FCE[J]. Measurement & Control Technology, 2015, 34(12): 122-126. | |
7 | 张冀, 李书, 贺天鹏, 等. 直升机RMS与测试性综合评估模型研究[J]. 系统工程与电子技术, 2016, 38(2): 470-475. |
ZHANG Ji, LI Shu, HE Tianpeng, et al. Research on the Comprehensive Evaluation Model of Helicopter RMS and Testability[J]. Systems Engineering and Electronics, 2016, 38(2): 470-475. | |
8 | 李海君, 徐廷学, 应新永. 基于测试数据与扩展TOPSIS-灰色关联的导弹状态评估决策[J]. 航空兵器, 2021, 28(6): 88-94. |
LI Haijun, XU Tingxue, YING Xinyong. Missile Condition Assessment Decision Based on Test Data and Extended TOPSIS-Grey Correlation[J]. Aero Weaponry, 2021, 28(6): 88-94. | |
9 | 程方. 基于雷达装备的测试性评估方法研究[J]. 现代导航, 2022, 13(3): 227-229, 234. |
CHENG Fang. Research on Testability Evaluation Method Based on Radar[J]. Modern Navigation, 2022, 13(3): 227-229, 234. | |
10 | 应文健, 程雨森, 王旋, 等. 基于研制阶段数据融合的舰炮制导弹药测试性评估方法[J/OL]. 系统工程与电子技术. (2022-08-11) [2023-05-26]. . |
YING Wenjian, CHENG Yusen, WANG Xuan, et al. Testability Evaluation Method of Naval Gun Guided Ammunition Based on Data Fusion in Development Stage[J/OL]. Systems Engineering and Electronics. (2022-08-11) [2023-05-26]. . | |
11 | 中国人民解放军总装备部. 装备测试性工作通用要求: [S]. 北京: 中国人民解放军总装备部, 2012. |
The General Equipment Department of the People's Liberation Army of China. General Requirement for Materiel Testability Program: [S]. Beijing: The General Equipment Department of the People's Liberation Army of China, 2012. | |
12 | 中央军委装备发展部: [S]. 北京: 中国人民解放军总装备部, 2022. |
Equipment Development Department of the Central Military Commission. General Quality Characteristics Terms for Materiel: [S]. Beijing: Equipment Development Department of the Central Military Commission, 2022. | |
13 | QI Shoubin, FENG Junwen. Risk Aversion of Public Service Marketization Based on Fuzzy Analytic Hierarchy Process[J]. Mathematical Problems in Engineering, 2021, 2021: 6668516. |
14 | 朱贵玉, 方世跃, 尹春风, 等. 基于FAHP-CRITIC的暴雨洪涝灾害风险评估: 以西安市临潼区为例[J]. 水利水电技术(中英文), 2023, 54(4): 37-48. |
ZHU Guiyu, FANG Shiyue, YIN Chunfeng, et al. Risk Assessment of Rainstorm-Flood Disaster Based on FAHP-CRITIC: Taking Lintong District of Xi'an City as an Example[J]. Water Resources and Hydropower Engineering, 2023, 54(4): 37-48. | |
15 | 覃菊莹. 4种模糊标度的一致性容量研究[J]. 广西科学, 2007, 14(4): 367-370. |
QIN Juying. Analyzing for the Quantity of the Consistency Judgment Matrixes with Four Fuzzy Scales[J]. Guangxi Sciences, 2007, 14(4): 367-370. | |
16 | 夏源, 赵蕴龙, 范其林. 基于信息熵更新权重的数据流集成分类算法[J]. 计算机科学, 2022, 49(3): 92-98. |
XIA Yuan, ZHAO Yunlong, FAN Qilin. Data Stream Ensemble Classification Algorithm Based on Information Entropy Updating Weight[J]. Computer Science, 2022, 49(3): 92-98. | |
17 | 张近乐, 任杰. 熵理论中熵及熵权计算式的不足与修正[J]. 统计与信息论坛, 2011, 26(1): 3-5. |
ZHANG Jinle, REN Jie. The Deficiencies and Amendments of the Calculation Formulate of Entropy and Entropy Weight in the Theory of Entropy[J]. Statistics & Information Forum, 2011, 26(1): 3-5. | |
18 | MESHRAM S G, ALVANDI E, MESHRAM C, et al. Application of SAW and TOPSIS in Prioritizing Watersheds[J]. Water Resources Management, 2020, 34(2): 715-732. |
19 | 施端阳, 林强, 胡冰, 等. 改进AHM-TOPSIS的智能化雷达信息处理性能评估方法[J]. 现代防御技术, 2023, 51(5): 93-103. |
SHI Duanyang, LIN Qiang, HU Bing, et al. Performance Evaluation of Intelligent Radar Information Processing Based on Improved AHM-TOPSIS[J]. Modern Defence Technology, 2023, 51(5): 93-103. | |
20 | 丰雪, 白子卉, 战丽媛, 等. 基于熵权多属性决策的温室番茄综合生产效果评价方法比较研究[J]. 沈阳农业大学学报, 2019, 50(4): 445-453. |
FENG Xue, BAI Zihui, ZHAN Liyuan, et al. Comparative Research on Evaluation Methods of Comprehensive Production Effect of Greenhouse Tomato Based on Entropy Weight Multi-Attribute Decision[J]. Journal of Shenyang Agricultural University, 2019, 50(4): 445-453. | |
21 | 杜岩, 谢从珍, 李彦丞, 等. 基于加权马氏距离型TOPSIS算法的10 kV配电网雷害风险评估[J]. 中国电力, 2022, 55(4): 108-116. |
DU Yan, XIE Congzhen, LI Yancheng, et al. Lightning Risk Assessment of 10 kV Distribution Line Based on TOPSIS Algorithm Improved by Weighted Mahalanobis Distance[J]. Electric Power, 2022, 55(4): 108-116. | |
22 | 刘光辉, 殷鸣, 谢罗峰, 等. 基于G1-CRITIC的不同距离TOPSIS法的机床工艺参数综合决策方法研究[J]. 组合机床与自动化加工技术, 2021(1): 146-151. |
LIU Guanghui, YIN Ming, XIE Luofeng, et al. Research About Comprehensive Decision-Making Method of Machine Tool Process Parameters by Different Distance TOPSIS Based on G1-CRITIC[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021(1): 146-151. | |
23 | 卜凡康. 制导装置性能评价方法及其应用研究[D]. 长沙: 国防科技大学, 2020. |
BU Fankang. Research on Performance Evaluation Method and Its Application of Guidance Device[D]. Changsha: National University of Defense Technology, 2020. | |
24 | 吴晗, 李时莹, 亓彦珣, 等. 基于综合赋权与WRSR的高压开关柜状态评估方法研究[J]. 高压电器, 2020, 56(2): 47-52. |
WU Han, LI Shiying, QI Yanxun, et al. State Evaluation Method of High-Voltage Switchgear Based on Comprehensive Weighting and WRSR[J]. High Voltage Apparatus, 2020, 56(2): 47-52. | |
25 | 柳怡晨, 于竞哲, 陈向荣, 等. 基于TOPSIS-RSR方法的水环境下交流配网XLPE电缆绝缘状态评估[J]. 高压电器, 2021, 57(7): 105-111, 118. |
LIU Yichen, YU Jingzhe, CHEN Xiangrong, et al. Insulation Condition Assessment of XLPE Cable in AC Distribution Network Under Water Environment Based on TOPSIS-RSR Method[J]. High Voltage Apparatus, 2021, 57(7): 105-111, 118. | |
26 | 中国人民解放军总装备部. 军用地面雷达测试性要求: [S]. 北京: 中国人民解放军总装备部, 2000. |
The General Equipment Department of the People's Liberation Army of China. Testability Requirements for Military Ground Radar: [S]. Beijing: The General Equipment Department of the People's Liberation Army of China, 2000. | |
27 | 王立斌, 孙寻航, 杨迪, 等. 基于大数据的专变客户用能健康状态综合评价[J]. 智慧电力, 2021, 49(12): 96-103. |
WANG Libin, SUN Xunhang, YANG Di, et al. Comprehensive Evaluation of Energy Utilization Health Status of Specialized Transformer Customers Based on Big Data[J]. Smart Power, 2021, 49(12): 96-103. |
[1] | Yonghua ZENG, Haiyan WANG, Tingting WU, Xiaolong WANG, Baicun JIANG, Hengyuan LIANG. Evaluation of Contingent-Level Battlefield Repair Capability Based on Cloud Model [J]. Modern Defense Technology, 2024, 52(5): 116-126. |
[2] | Baogang LI, Shuang CUI, Depeng DONG. Evaluation of Missile Equipment Maintenance Support Effectiveness Based on Gray-Improved Two-tuple Linguistic Information [J]. Modern Defense Technology, 2024, 52(5): 127-137. |
[3] | Yujiang WANG, Peng DI, Bingxu HOU, Junpeng LIANG, Yao ZHAO, Junyuan CHEN. Research on Ship Power System Resilience Evaluation Based on FAHP-CM [J]. Modern Defense Technology, 2024, 52(5): 138-146. |
[4] | Aihong ZHU, Liang SUN, Mingjie LIU, Desheng JIANG. Research on Jamming Tactical Application of Chaff Corridor [J]. Modern Defense Technology, 2024, 52(4): 101-107. |
[5] | Qiang GUO, Jinghua WANG, Wei WEI, Tao WANG. Research on the Interception Capability of Electronic and Firepower Integrated Multilayer Air Defense System Based on Queuing Theory [J]. Modern Defense Technology, 2024, 52(3): 20-25. |
[6] | Qi LI, Qian GAO, Xiaohui SUN, Ning MEI, Feng GUO. Research of Command and Control Model Design Based on Evaluation Model [J]. Modern Defense Technology, 2024, 52(3): 80-86. |
[7] | Jiaxi CHEN, Yuhao WANG, Chen CHENG, Xiaorui YUE. Research on the Evaluation Method of Launch Flight Reliability of Missile [J]. Modern Defense Technology, 2024, 52(3): 137-142. |
[8] | Weijun YU, Zhaohui SHI. Research on Rationality Evaluation of Anti-Missile Equipment Configuration [J]. Modern Defense Technology, 2023, 51(6): 18-25. |
[9] | Kun WANG, Yuchen ZHANG, Shuqin DONG, Jiang WU. Cyberspace Defense Capability Assessment Based on TOPSIS-Grey Association Analysis [J]. Modern Defense Technology, 2023, 51(6): 97-104. |
[10] | Guodong YUAN, Ming HE, Wei HAN, Minggang YU, Mingyang CHENG. Research on Resilience Reconstruction of Community Network of Unmanned Aerial Vehicle Swarm [J]. Modern Defense Technology, 2023, 51(5): 50-58. |
[11] | Duanyang SHI, Qiang LIN, Bing HU, Jiajun CHEN. Performance Evaluation of Intelligent Radar Information Processing Based on Improved AHM-TOPSIS [J]. Modern Defense Technology, 2023, 51(5): 93-103. |
[12] | Bin WANG, Jice WANG, Ying SHANG, Xiaofei WANG, Quan WEN. Effectiveness Evaluation and Defense Strategies for Network Attacks of Air and Missile Defense System [J]. Modern Defense Technology, 2023, 51(3): 57-65. |
[13] | Wenhua HU, Changan ZHU, Dongfang XUE, Xi ZHAO, Rui YANG. Design and Implementation of Radar Condition Monitoring and Comprehensive Performance Evaluation System [J]. Modern Defense Technology, 2023, 51(2): 133-140. |
[14] | Guoliang LIU, Gangling JIAO, Ying MA, Jie HU, Weijiang SHI. Study on Safety Test Method of Ammunition [J]. Modern Defense Technology, 2023, 51(1): 107-118. |
[15] | Zhenzhi SONG, Daowen HAN, Junchen BAO, Chaoyan HUANG. Combat Effectiveness Evaluation Method Based on Improved ADC Model of Electro-Optic Countermeasure System [J]. Modern Defense Technology, 2023, 51(1): 26-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||